Frequency Synthesis

Patricia Desgreys **TELECOM201b** Filière TELECOM - 2A

IP Paris – TELECOM Paris COMELEC – LTCI 19, place Marguerite Perey 91120 Palaiseau [http://www.comele](http://www.comelec.enst.fr/)c.enst.fr/

DIP PARIS

Digital Transceiver RF Front-end

RF oscillators

PLLs

• Indirect frequency synthesis

Transceiver chain

Direct conversion transceiver SSB

DIP PARIS

Single-Side Band Transceiver

 $f_{LO} = f_0 + k f_{ch}$ Chanel selection

Mixer converts signal band around carrier frequency down to DC (baseband)

Telecom 201b January 19, 2022 . Page 4

Key functions

Almost all the functions are implemented in digital signals :

- **Coding/decoding**
- Modulation/demodulation (amplitude, frequency or phase)
- Pulses shaping (raised cosine filtering)

A few analog functions remain unavoidable :

- LNA, Mixers
- Power amplifiers
- Filters
- ADC & DAC
- RF oscillators
- PLLs
- Frequency synthesizers

Frequency synthesizer

The "black box" view of a frequency synthesizer is a block getting a very stable reference frequency (usually provided by quartz oscillator) and delivering a set of frequencies between F_{min} and F_{max} with a resolution of Δf :

The frequency range $[F_{min}, F_{max}]$ and the resolution Δf are synthesizer fundamental specifications which depend on the application.

Main specifications

- **•** Frequency range
- **B** Resolution
- Accuracy
- Settling time
- Reference frequency
- Spurs
- Power consumption
- Temperature stability
- **•** Phase noise

PARIS

• Digital Transceiver RF Font-end

PLLs

• Indirect frequency synthesis

Telecom 201b January 19, 2022 . Page 8

RF oscillators - Introduction

An oscillator must provide a self-sustaining periodic signal

DE IP PARIS

RF oscillators – Output waveform

RF oscillators – Frequency selection

Telecom 201b January 19, 2022 . Page 11

1

 ω_{0}

 $C₁$

 $C₂$

 $_{1}$ + $_{2}$

 $C_1 + C$

 LC_1C

2

1

C

C $\left(1+\frac{C_1}{C}\right)$

 $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

2

m g

 $1\overline{2}$

RF oscillators – LC Architecture

Pros : High quality factor One single inductor

DE IP PARIS

Cons : Large ratio C_1/C_2 One terminal output

CMOS differential architecture

- Pros : High quality factor Differential output
- Cons : Matching of the two LC cells

Voltage Controlled RF oscillators (VCO)

- $f_{LO} = f_0 + k f_{ch}$ Need to obtain an adjustable frequency RF oscillation for channel selection :
- Frequency value controlled by a voltage

Use of a varicap diode in the LC cell

Voltage Controlled RF oscillators (VCO)

$$
\bullet \text{ VCO mathematical model}
$$

\n
$$
\omega_{LO} = \omega_{FR} + K_{VCO}V_{com} = \frac{d\Phi}{dt}
$$

\n
$$
X(t) = V_{LO}\cos(\Phi) = V_{LO}\cos\left(\omega_{FR}t + K_{VCO}\int V_{com}dt\right)
$$

If the control voltage is constant, the frequency is shifted by $K_{VCO}V_{com}$

$$
V_{com} = V_0
$$

$$
X(t) = V_{LO} \cos((\omega_{FR} + K_{VCO}V_0)t + \phi_0)
$$

• The VCO is a frequency modulator

$$
V_{com} = V_m \cos(\omega_m t)
$$

$$
X(t) = V_{LO} \cos\left(\omega_{FR} t + \frac{K_{VCO}}{\omega_m} V_m \sin(\omega_m t)\right)
$$

Rejection of the control voltage HF components

RF oscillators – Phase noise

- Origin : internal noise of components constituting the oscillator example : amplifier thermal noise (use of a single transistor to minimize)
- Main effect : Random deviation of output wave frequency

$$
X(t) = V_{LO} \cos(\omega_{LO} t + \Phi_n(t))
$$

\n
$$
\Phi_n(t) = V_{LO} \cos(\omega_{LO} t) - \Phi_n(t) \sin(\omega_{LO} t)
$$
 phase noise

Frequency domain characterization for RF applications :

Spectral characterization

Thus, because of the different noise sources (thermal, 1/f…) the Power Spectral Density (PSD) spreads around f_0

Example (DECT standard) : -97dBc/Hz @ 1,8 MHz

Telecom 201b January 19, 2022 . Page 16

Phase noise and Jitter

Phase noise and jitter are two manifestations of an unique phenomena : random fluctuations of the oscillator period.

Phase noise is associated to spectral representation whereas jitter is associated to time representation of these fluctuations

Phase noise – Reciprocal mixing

Phase noise – Specification example

Real spectrum of the transmitter

Adding noise during up-conversion to transmission

Calculation of a phase noise specification for the RF oscillator :

- Bandwidth of interest : $f_H f_L = 30$ kHz
- Assumption : $S_n(\Delta f)$ is constant in this band

 $S_n(\Delta f) = S_0 \quad [dBc/Hz]$

What is the maximum value of S_0 that guarantees an SNR in the channel of interest greater than 15 dB?

?

Phase noise – Specification example

Real spectrum of the transmitter

 f_L f_H f

 $\Lambda f = 60$ kHz

Calculation of a phase noise specification for the RF oscillator :

- Bandwidth of interest : f_H f_L = 30 kHz
- Assumption : $S_n(\Delta f)$ is constant in this band

 $S_n(\Delta f) = S_0 \quad [dBc/Hz]$

What is the maximum value of S_0 that guarantees an SNR in the channel of interest greater than 15 dB?

> $SNR_{AB} = P_S - P_M$ $S_0 = DSP_{\text{N}} - P_{\text{B}}$ $P_{N}=S_0 + P_{B} + 10log(f_{H}-f_{L})$

 S_0 =-SNR_{dB} -60dB-10log(f_H-f_L)

The phase noise shall not exceed -120 dBc/Hz at 60 kHz offset

FI FLUM

• Digital Transceiver RF Font-end

• RF oscillators

• Indirect frequency synthesis

PLL – Presentation

Basic Phase Locked Loop

The loop is locked when $\Delta\Phi$ is constant, which corresponds to the equality of the input and output frequencies.

$$
\omega_y = \omega_{FR} + K_{VCO} V_{com} = \omega_x
$$

$$
\Delta \Phi = \frac{V_{com}}{K_{DP}} = \frac{\omega_x - \omega_{FR}}{K_{DP} \cdot K_{VCO}}
$$

The frequency are exactly equal !

PLL – Dynamic behavior

 $(p) = \frac{\Phi_y(p)}{P}$ (p) (p) (p) \mathbf{y} (P) Λ \mathbf{U}_{LPF} *DP VCO* $H(p) = \frac{\Phi_y(p)}{\Phi_x(p)} = \frac{K G_{LPF}(p)}{p + K G_{LPF}(p)}$ avec $K = K_{DP} K$ Closed loop transfer function:

with first order low-pass filter: $G_{LPF}(p) = \frac{1}{\sqrt{1-\frac{1}{n}}}$, we obtain a classical second order system: G_{LPF} $\left(p\right)$ = *p* + 1 ω_{LPF} 2 ω *n H p* $=\frac{\omega_n}{p^2+2\zeta\omega_n p+\omega_p}$ $\Delta\omega$ (p) $\omega_{\rm x}$ $2^2 + 2\zeta \omega_n p + \omega_n^2$ $p^2 + 2\zeta \omega_n p$ $n P + \omega_n$ *avec* $\omega_n = \sqrt{\omega_{LPF}} K$ ω_{v} $\Delta\omega$ 1 $\zeta = \frac{1}{2} \sqrt{\frac{\omega}{\omega}}$ $et \quad \zeta = \frac{1}{2} \sqrt{\frac{w_{LPF}}{r}}$ 2 *K* sısrnı $\Delta\omega$ *K* $\Lambda\Phi$

Charge Pump PLL

Architecture with 3-state phase/frequency detector and charge pump circuit

 $I_1 = I_2 = I$

Waveforms in CPPLL with $\omega_x > \omega_y$ in closed loop :

> V_{out} constant $\Delta \Phi = \Phi_x - \Phi_y = 0$ $Q_X = Q_Y = 0$ V_{out} $\omega_y = \omega_{FR} + K_{VCO} V_{out} = \omega_x$

Charge Pump PLL

Assuming that the bandwidth of the loop is much lower than the input frequency:

$$
\phi_x \longrightarrow \begin{array}{c|c} K_{PFD} & V_{out} & K_{VCO} \\ \hline p & K_{PFD} = \frac{I}{2\pi C_p} & H(p) = \frac{\Phi_y(p)}{\Phi_x(p)} = \frac{K}{p^2 + K} & \text{avec} \quad K = K_{PFD}K_{VCO} \end{array}
$$

Main difference : two poles at zero in open loop

- Pros : Maximum extension of the capture range,
	- Increase of the locking speed,
	- Zero static phase error (if ideal circuits).

CPPLL – Input phase noise filtering

Transfer function of a second-order CPPLL with a stabilization zero :

CPPLL – VCO phase noise filtering

PLL – Applications

RF signal demodulation

Important: Loop bandwidth large enough !

Phase-locked loop for FM demodulator

DE IP PARIS

Telecom 201b January 19, 2022 . Page 28

PLL – Applications

RF signal demodulation

Phase-locked loop for AM coherent demodulator

DE IP PARIS

PLL – Applications

Clock recovery

DIP PARIS

Telecom 201b January 19, 2022 . Page 30

PLL - Conclusion

Phase locked loops are key elements in digital communications systems. Their design and optimization are complex (trade-off between speed, precision, stability).

Main features are :

- **Locking and Capture Ranges**
- **Agility (locking speed)**
- **Phase noise**
- **Bandwidth**
- **Settling time**

Major application for the RF front end

RF frequency synthesis : RF oscillator, PLL

 $f_{LO} = f_0 + k f_{ch}$ Channel selection

• Digital Transceiver RF Font-end

• RF oscillators

PLLs

Indirect frequency synthesis

Frequency multiplication

Integer Modulus Synthesizer

The reference input frequency must be equal to the channel spacing.

Frequency divider by pulse counting

One output cycle occurs at the end of $(N + 1) * S + N * (P-S)$ input cycles.

$$
f_2 = \frac{f_1}{NP + S}
$$

Telecom 201b January 19, 2022 . Page 34

Integer Modulus Synthesizer

- *Main advantage*: architecture simplicity
- *Implementation* in RF system : VCO a single die in

Band counter, channel counter, PFD, charge pump CMOS technology

Main drawback: The reference frequency has a small value. The bandwidth of PLLs is limited to $1/10$ of The bandwidth of the loop is limited! **TELECOM** the input frequency to ensure stability

ex : GSM inter-channel spacing : 200kHz Settling time 100 µs or more

Paris

Fractional Modulus Synthesizer

Number of pulses during the time $(A+B)T_{out}$: $A/(N+1) + B/N$ 'Average' or equivalent frequency of y(t) : $(A/(N+1) + B/N) / ((A+B) T_{out})$ $=f_{\text{out}}/M$

DIP PARIS

Use of a two-modulus frequency divider

Locked loop : $f_{\text{ref}} = f_{\text{out}} / M$ $f_{\text{out}} = M * f_{\text{ref}}$

$$
M = \frac{A+B}{\frac{A}{N+1} + \frac{B}{N}}
$$

$$
N < M < N+1
$$

Fractional Modulus Synthesizer

EXAMPLE :

Let's Consider a synthesizer for which the reference frequency is provided by a 1MHz oscillator. The expected output frequency is:

$$
f_{out} = f_0 + k f_{ch}
$$

with $f_0=10$ MHz and $f_{ch}=100$ kHz for k= 0, 1, 2,...9, 10. What is the value of N? What are the minimum possible values for A and B to address the different channels?

1 $N < M < N+1$ $M = \frac{A+B}{A+B}$ $N+1$ *N* $=\frac{A+}{}$ + +

IP PARIS

?

Fractional Modulus Synthesizer

EXAMPLE :

Let's Consider a synthesizer for which the reference frequency is provided by a 1MHz oscillator. The expected output frequency is:

DE IP PARIS