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Transceiver chain
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Single-Side Band Transceiver
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RF frequency synthesis: RF oscillator, PLL

Mixer converts signal band around carrier frequency down to DC (baseband)

0LO chf f k f= + Chanel selection
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Key functions

Almost all the functions are implemented in digital signals :
Coding/decoding
Modulation/demodulation (amplitude, frequency or phase)
Pulses shaping (raised cosine filtering)

A few analog functions remain unavoidable :
• LNA, Mixers
• Power amplifiers
• Filters
• ADC & DAC

• RF oscillators
• PLLs
• Frequency synthesizers
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Frequency synthesizer

The “black box” view of a frequency synthesizer is a block getting a very 
stable reference frequency (usually provided by quartz oscillator) and 
delivering a set of frequencies between Fmin and Fmax with a resolution of Df :

The frequency range [Fmin, Fmax] and the resolution Df are synthesizer fundamental 
specifications which depend on the application.

Frequency 
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Fmax
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Main specifications

Frequency range
Resolution
Accuracy
Settling time
Reference frequency
Spurs
Power consumption

Temperature stability
Phase noise
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RF oscillators - Introduction

An oscillator must provide a self-sustaining periodic signal
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RF oscillators – Output waveform

Mixer good behavior is favored if the 
waveform of the local oscillator (LO) 
exhibits abrupt transitions and if the duty 
cycle is equal to 50%

oscillator Vout

M1 M2

Input stage of an active CMOS mixer

Ideal waveform = Square wave signal

Approximation of a square wave signal  
with a large amplitude sinusoid

Vout

Switching 
range of M1

and M2

Large amplitude wave

Differential topology  for duty 
cycle of 50%
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RF oscillators – Frequency selection

Frequency selective network or resonator

S
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The system oscillations frequency is 
determined by the characteristics of the 
selective circuit.

LC

T1

1

mg

Direct return from 
collector to emitter

1
LC

w =

Colpitts oscillator

1 2
0

1 2

C C
LC C

w
+

=L
C1

T1

C2

2
1

2
1

m

C
C
g

æ ö
+ç ÷

è ø

X



Telecom 201b January 19, 2022 . Page 12

RF oscillators – LC Architecture

Colpitts oscillator

L
C1

T1

C2X

Pros : High quality factor
One single inductor

Cons : Large ratio C1/C2
One terminal output

CMOS differential architecture

Pros : High quality factor 
Differential output

Cons : Matching of the two LC cells
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Voltage Controlled RF oscillators (VCO)

0LO chf f k f= +

Need to obtain an adjustable frequency RF oscillation for 
channel selection :

Frequency value controlled by a voltage
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Voltage Controlled RF oscillators (VCO)

VCO mathematical model

If the control voltage is constant, the frequency is shifted by KVCOVcom

The VCO is a frequency modulator
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RF oscillators – Phase noise

Origin : internal noise of components constituting the oscillator
example : amplifier thermal noise (use of a single transistor to minimize)

Main effect : Random deviation of output wave frequency

Fn(t) : phase noise

Frequency domain characterization for RF applications :

Ideal spectrum Real spectrum
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Spectral characterization

Thus, because of the different noise sources (thermal, 1/f…) the Power Spectral 
Density (PSD) spreads around f0

Example (DECT standard) : -97dBc/Hz @ 1,8 MHz
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Phase noise and Jitter

Phase noise and jitter are two manifestations of an unique phenomena : random 
fluctuations of the oscillator period.

Phase noise is associated to spectral representation whereas jitter is associated to 
time representation of these fluctuations
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Phase noise – Reciprocal mixing

Channel selection

wLO
frequency

HF signal
of interest

Channel selection

wLO
frequency

HF signal
of interest

Blocker

Ideal oscillator

Real oscillator

Addition of noise during down-conversion to reception
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Phase noise – Specification example
Real spectrum of the transmitter

w1 w

Adding noise during up-conversion 
to transmission

w2

fL ffH

Sn(f)

Spurious signal HF channel
of interest

Df = 60 kHz

Calculation of a phase noise specification 
for the RF oscillator :

Bandwidth of interest : fH - fL = 30 kHz
Assumption : Sn(Df) is constant in this band

What is the maximum value of S0 that guarantees an 
SNR in the channel of interest greater than 15 dB?

60 dB

PB

( ) [ ]0 /nS f S dBc HzD =

PS

?



Telecom 201b January 19, 2022 . Page 20

Phase noise – Specification example
Real spectrum of the transmitter

w1 w

Adding noise during up-conversion 
to transmission

w2

fL ffH

Sn(f)

Spurious signal HF channel
of interest

Df = 60 kHz

Calculation of a phase noise specification 
for the RF oscillator :

Bandwidth of interest : fH - fL = 30 kHz
Assumption : Sn(Df) is constant in this band

What is the maximum value of S0 that guarantees an 
SNR in the channel of interest greater than 15 dB?

60 dB

PB

( ) [ ]0 /nS f S dBc HzD =

PS

The phase noise shall not exceed 
-120 dBc/Hz at 60 kHz offset

SNRdB = PS -PN

S0= DSPN -PB
PN=S0 +PB +10log(fH-fL)

S0 =-SNRdB -60dB-10log(fH-fL)
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PLL – Presentation

Phase
detector
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Filter VCOx(t) y(t)

Basic Phase Locked Loop
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The loop is locked when DF is constant, 
which corresponds to the equality of the 
input and output frequencies.
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PLL – Dynamic behavior
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Charge Pump PLL

Architecture with 3-state 
phase/frequency detector and 
charge pump circuit

Waveforms in CPPLL
with wx> wy in closed loop :
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Charge Pump PLL

Main difference : two poles at zero in open loop

Pros : Maximum extension of the capture range,
Increase of the locking speed,
Zero static  phase error (if ideal circuits).

Cons : Instability issue
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CPPLL – Input phase noise filtering
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Transfer function of a second-order CPPLL with a stabilization zero :
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Slow variations of the phase 
noise are reproduced at the output.

HF noise is eliminated at the 
output.
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CPPLL – VCO phase noise filtering
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The transfer function is a high-
pass filtering

An increase in the bandwidth of 
the PLL decreases the phase noise 
of the VCO
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PLL – Applications

RF signal demodulation

Phase
detector

Low-pass 
Filter VCOx(t) y(t)

Phase-locked loop for FM demodulator

FM signal

Demodulated output
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Important: Loop bandwidth large enough !
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PLL – Applications

RF signal demodulation

Phase
detector

Low-pass 
Filter VCOx(t) y(t)

Phase-locked loop for AM coherent demodulator

AM signal

Demodulated output
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PLL – Applications

Clock recovery

Phase
detector

Low-pass 
Filter VCOx(t) y(t)

VcomVout

1 0 1 1 0 0 1 0

1 0 1 1 0 0 1 0

1 0 1 1 0 0 1 0

Manchester 
code (biphase)

Unipolar RZ 
code 

Differential 
Biphase code 
(DBP)

Phase-locked loop for clock recovery from an encoded signal

Important : Phase noise small enough !
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PLL - Conclusion

Phase locked loops are key elements in digital communications systems. Their 
design and optimization are complex ( trade-off between speed, precision, stability).

Main features are :
Locking and Capture Ranges
Agility (locking speed)
Phase noise
Bandwidth
Settling time

Major application for the RF front end

RF frequency synthesis : RF oscillator, PLL

0LO chf f k f= + Channel selection
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Frequency multiplication
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Basic loop system
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Integer Modulus Synthesizer

Phase
detector

Low-pass 
Filter VCOfref

÷M

fout

Modulus selection

The reference input frequency must be equal to the channel spacing.
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out réf ch

L H
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Frequency divider 
by pulse counting

1
2

ff
NP S

=
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÷(N+1)/N ÷Pf1

÷S

f2

Channel selection

prescaler Band counter (P>S)

Channel
counter

resetModulus
control

÷M

f1f2

One output cycle occurs at the end of 
(N + 1) * S + N * (P-S) input cycles.
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Integer Modulus Synthesizer

Main advantage: architecture simplicity

Implementation in RF system : VCO a single die in
prescaler deeply submicronic

Band counter, channel counter, PFD, charge pump                   CMOS technology

Main drawback: 
The reference frequency has a small value.
The bandwidth of PLLs is limited to 1/10 of The bandwidth of the loop is limited!
the input frequency to ensure stability

ex : GSM inter-channel spacing : 200kHz
Settling time 100 µs or more

PFD Charge
pump VCOfréf

÷M

fout

Modulus selection

÷(N+1)/N ÷Pf1

÷S

f2

Channel selection

prescaler Band counter

Channel
counter

resetModulus
control

÷M
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Fractional Modulus Synthesizer

Phase
detector

Low-pass 
Filter VCOfref fout

x(t)

A*Tout B*Tout

Number of pulses during the time (A+B)Tout :
A/(N+1) + B/N

'Average' or equivalent frequency of y(t) :
(A/(N+1) + B/N)  /  ((A+B) Tout) 
= fout / M

Locked loop :
fréf = fout / M
fout = M * fréf 

Use of a two-modulus 
frequency divider

Modulus
control

÷(N+1)/N

prescaler

y(t)

A*Tout B*Tout

1
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A BM
A B
N N

N M N

+
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Fractional Modulus Synthesizer

?

Phase
detector

Low-pass 
Filter VCOfréf fout

Modulus
control

÷(N+1)/N

prescaler

EXAMPLE :
Let's Consider a synthesizer for which the reference frequency is provided by a 
1MHz oscillator. The expected output frequency is:

with f0=10 MHz and fch=100kHz for k= 0, 1, 2,…9, 10.
What is the value of N?
What are the minimum possible values for A and B
to address the different channels?

0out chf f kf= +

1
1

A BM
A B
N N

N M N

+
=

+
+

< < +
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Fractional Modulus Synthesizer

Phase
detector

Low-pass 
Filter VCOfréf fout

Modulus
control

÷(N+1)/N

prescaler

EXAMPLE :
Let's Consider a synthesizer for which the reference frequency is provided by a 
1MHz oscillator. The expected output frequency is:

with f0=10 MHz and fch=100kHz for k= 0, 1, 2,…9, 10.
What is the value of N?
What are the minimum possible values for A and B
to address the different channels?

0out chf f kf= + N=10
Pour k=0, A=0 k=10, B=0
k=1, A=11, B=90 k=2, A=22, B=80
k=3, A=33, B=70 k=4, A=44, B=60
k=5, A=55, B=50 k=6, A=66, B=40
k=7, A=77, B=30 k=8, A=88, B=20
k=9, A=99, B=10

1
1

A BM
A B
N N

N M N

+
=

+
+

< < +


