

Systèmes de communication sans fil (bande de base)

2AFilière TELECOM - Année Scolaire 2020-2021(S1)

Contrôle de Connaissances

Durée 1h30 - Documents et calculatrice autorisés

Exercices

Exercice	Récepteur Radio pour standard WiFi	-
Exercice	Conversion analogique numérique	:

Exercice 1 - Récepteur Radio pour standard WiFi

On s'intéresse à la conception d'un récepteur radio pour un standard WiFi. Nous utiliserons une architecture atypique qui combine un mélangeur avec du sous-échantillonnage. L'architecture est présentée dans la figure 1. Pour des raisons de simplicité, nous allons étudier la chaine juste en présence d'un seul interféreur.

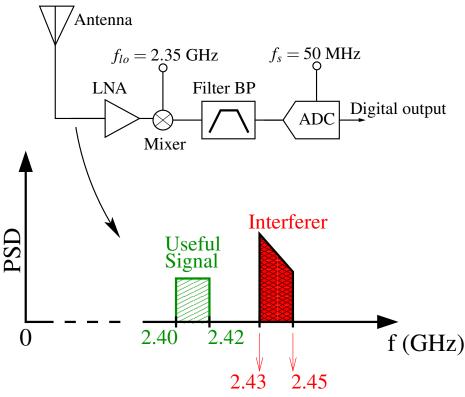


FIGURE 1 – Récepteur WLAN

La puissance minimale en entrée du récepteur est de -78 dBm, la bande passante du signal est $B=20~\mathrm{MHz}$ et la fréquence centrale de 2.41 GHz. Le récepteur est adapté avec une résistance de 50Ω . Nous ferons notre étude à une température $T=290~\mathrm{K}$. On rappelle que la constante de Boltzmann vaut $1.38\cdot10^{-23}~\mathrm{J\cdot K^{-1}}$ et que la constante de Planck vaut $6.62\cdot10^{-34}~\mathrm{J\cdot s}$.

Question 1.1 Calculer la puissance du bruit thermique à l'entrée du récepteur dans la bande du signal utile. En déduire le rapport signal à bruit minimal en entrée du récepteur.

Question 1.2 Sachant que le rapport signal à bruit à la sortie du récepteur doit être supérieur à 11 dB afin de garantir un bon fonctionnement, déterminer le facteur de bruit maximal que pourrait avoir le récepteur.

Question 1.3 Tracer à main levée le spectre du signal

- à la sortie du mélangeur ¹ et,
- à la sortie du convertisseur analogique numérique (CAN ou ADC) en faisant abstraction du filtre passe bande.

Sur les 2 figures, faites apparaître les fréquences minimales et maximales du signal utile et de l'interféreur. Expliquer brièvement (<5 lignes) vos schémas.

Question 1.4 Quel serait selon vous le meilleur choix pour f_s si on changeait f_{lo} de 2.35 GHz à 2.3 GHz?

Intéressons nous à présent au filtre passe bande. Ce filtre doit avoir une variation de gain inférieure à 3 dB dans la bande passante et son atténuation sur toute la bande de l'interféreur doit être supérieure à 30 dB. Nous souhaitons implémenter ce filtre à l'aide d'une approximation de Butterworth à symétrie géométrique. Nous rappellons que l'approximation de Butterworth est donnée par $\Psi_n(\Omega) = \Omega^n$.

^{1.} Ne tracez pas les composantes autour de $2f_{lo}$, on peut supposer qu'elles seront filtrées par le mélangeur

Question 1.5 Tracer le gabarit d'atténuation de ce filtre. Faites apparaître dessus les valeurs de f_1 , f_2 , f_3 , f_4 , A_{min} et A_{max} . En déduire le gabarit du filtre prototype passe bas..

Question 1.6 En déduire l'ordre minimal du filtre qui permet d'atteindre les spécifications voulues.

Exercice 2 - Conversion analogique numérique

Question 2.1 Exprimer la valeur de la densité du bruit de quantification dsp_e en fonction de la tension de pleine échelle V_{PE} , de la résolution n et de la fréquence d'échantillonnage F_e .

Question 2.2 En considérant un signal d'entrée sinusoïdal de fréquence F_s et d'amplitude $V_{PE}/2$ Etablir la formule donnant le SNR en fonction de n et de l'OSR tel que $OSR = \frac{F_e}{2F_s} = 2^L$

Question 2.3 Pour une architecture Flash suréchantillonnée de résolution n=5 bits, calculer la valeur de L permettant d'atteindre l'équivalent de 8 bits de résolution en Nyquist.

Question 2.4 Quelle architecture de CAN à sur échantillonnage permet d'augmenter encore plus la résolution effective? Grâce à quelle technique spécifique?