

Institut Mines-Telecom

Electronique des Systèmes Embarqués

Chadi Jabbour

Electrical Simulators

What is an Electrical simulator

Electrical simulator

Is a class of software that allows to simulate the behavior of an Electrical circuits

Difference with a simple programming langage (C, python ...)

The main differences are that an electrical simulator

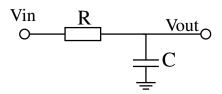
- ▶ is able to emulate simultaneous simulation
- ▶ is able to emulate continuous time simulation
- allows to obtain for both voltage and current

What are the applications for electrical simulation

Electrical Simulators have two main applications:

- ➤ Simulate circuits in order to build an application-specific integrated circuits (ASIC). This requires to have the design kit of the technology ...
- ► Simulate systmes built using circuits of the Shelf (COTS).

Simulator types


There are many simulators types, there are classified depending

- ► Applications: more suited to RF, analog or mixed signals, designing PCB ...
- Price
- Operating system
- **...**

Famous simulators

- Spectre Cadence
- Calibre Siemens
- ► LTspice Analog Devices
- ► NGspice (Open Source)

Exercice 1: Transient simulation of an RC filter

- Instanciante, Resistor, capacitor, input source and ground
- Connect them and name nets.
- ► Configure the components
- ▶ Configure the simulation, launch it and analyze the results

Analysis types

- Transient: calculates a circuit's response over a period of time defined by the user.
- ► AC (Alternative current) or small analysis: calculates the frequency behavior of a linearized version of the circuit
- ▶ DC (direct current): calculates the DC operating point of the circuit.
- ► Noise is a small signal analysis which calculates the output noise observed in a circuit.

Input types in LTspice

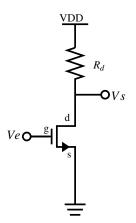
- ▶ DC: Constant voltages used to generate supply and reference voltages
- Sinewave: Sinewave at given frequency used mainly for the circuit input
- Pulse: Pulse is square wave whose on and off voltages and duration can be adjusted. It is used mainly for clock and control signals
- ► PWL (piece wise linear): PWL source allows to describe a transient voltage waveform by connecting linearly time-voltage pairs. It is used for custom signals
- ► Imported source: used to import external signals such as audio. Is instancied using a LTspice directive

7/14

Accuracy and reliability of the results

Reliability and accuracy

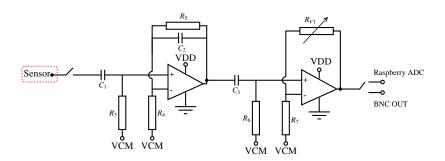
An electrical simulator could give a "good" result for a bad circuit or a "bad" result for a "good" circuit! It is really important to not trust the simlator blindly


The inaccuracy could be

- Problem of validity of the model
- ► High ratio of time constants (ratio between the highest and the lower frequency in the circuit)
- Unsuitedness of the analyses (for example: simulating non linearity with AC simulation)

It is mandatory to understand the circuit behavior before simulating it!!!!

Exercice 2: DC and AC analysis of an Amplifier



- Instanciante NMOS transistor, resistor (1 kΩ) and VDD=5 V
- Connect them and name nets
- Perform a DC analysis of Ve between 0 and 5 V
- Perform an AC analysis of Ve between 1 kHz and 1 MHz

Heart rate sensor Acquisition chain

- We use a photoplethysmographic sensor
- ► Frequency between 0.8 to 3 Hz
- ► A variable gain with a factor 10
- ► The output should be comprised between 0 to 4 V to be suited for the ADC

Exercice 3: build the amplifier/filter for the heart rate sensor

- ► Analyze the circuit
- ► Implement it on LTspice
- Transient simulation
- AC simulation
- ightharpoonup Parametric simulation with RV_1

Values

R ₃	R ₄	R_5	R_6	R ₇
100k	10k	680k	100k	10k
RV_1	C_1	C_2	<i>C</i> ₃	VCM
100k	2.2u	68n	2.2u	2 V

LTspice help

Shortcuts:

Сору	Move	Drag	delete Draw wire		Label net
ctrl+c	F7	F8	del/suppr	F3	F4
Inductor	Capacitor	resistor	Component	Ground	Properties
L	С	R	F2	g	Right click

Units:

10^{-12}	10^{-9}	10^{-6}	10^{-3}	10 ³	10 ⁶	10 ⁹
р	n	u	m	k	meg	g

Parametric Simulation:

Merci pour votre attention

Questions?

