

AMS and RF functions

M2 ICS - Scholar Year 2018-2019(S1)

ICS905 - Test

Duration 1h30 - Documents and calculator are allowed

Exercises

Direction de la Formation Initiale Département Communications et Électronique École Nationale Supérieure des Télécommunications

Exercise 1 - Power Amplifier Characterization

- Question 1.1 For an amplifier, explain what the IP1 is.
- Question 1.2 For an amplifier, explain what the IP3 is.
- Question 1.3 Explain what the ACPR is.
- Question 1.4 Explain what the PAPR is.

Question 1.5 What is the main consequence for an I-Q constellation when the signal is distorted ?

Exercise 2 - High Pass Filter

We would like to implement a high pass filter with a corner frequency of 10 MHz, with an attenuation higher than 30 dB at 1 MHz. The in-band attenuation should be lower than 1 dB in the band of interest $(f>10$ MHz).

Question 2.1 Plot the template of the wanted filter as well as the template of the equivalent low pass prototype.

Question 2.2 Calculate the order of the prototype filter for a polynomial approximation of Butterworth.

We decide to implement this filter using the following cell.

Figure 1 – High Pass Filter Implementation

Question 2.3 Calculate the transfer function in the laplace domain. The operationnal amplifier could be considered ideal.

We decide to set $R_1=R_2=10 \text{ K}\Omega$ and $C_1 = C_2 = 10 \text{ pF}$.

Question 2.4 Does the filter meet to desired specifications ?

Exercise 3 - Digital modulations

3.1 Warming up – Generalities about OFDM

Question 3.1 What is the utility of cyclic prefix in OFDM systems and what is its requirement ?

Question 3.2 What is the main disadvantage of OFDM from the transmitter circuit point of view ?

Question 3.3 According to you, is an OFDM-QPSK more immune to noise than a regular QPSK (assuming ideal transmit and receive chain) ?

Question 3.4 OFDM is for electrical or electromagnetic signals ; assume now the modulated signal is sound. Give examples of music instrument that could be used to transmit sound-OFDM and explain why. For each example, give the number of available subcarriers.

3.2 Warming up – Binary digital baseband communication system

Let us consider a simple binary communication system model. It is made up of a signal source which is modeled by a binary random variable S representing the message bit sent. The random variable S can take the values -1 and $+1$ with equal probability. This signal is degraded by an additive Gaussian noise which is represented by a Gaussian random variable N of zero mean and variance σ^2 . The received value is a random variable $R = S + N$. This is illustrated in the figure below :

Question 3.5 Give the expression of $\mathbb{P}_S(s)$, the probability distribution of S, using Dirac delta distribution.

Question 3.6 Give the expression of $\mathbb{P}_{R|S}(r)$ the conditional probability density function of R given a value of $S = s$.^{[1](#page-2-0)}

Question 3.7 Find $\mathbb{P}_R(r)$ the probability density function of R.^{[2](#page-2-1)}

[3](#page-2-2).3 HIT $3-$ Optimal threshold of a digital baseband communication system

To transmit a series of independent binary elements (a.k.a. bits) β , taking the values $\beta = 0$ or $\beta = 1$ with the same probability, we use an alphabet of two signals $h_0(t)$ and $h_1(t)$ of duration T, defined on the interval $[0, T]$. On the interval $[kT, (k+1)T]$, one transmits $h_0(t - kT)$ or $h_1(t - kT)$ according to the value of the binary element to be transmitted ; and for sake of simplicity, we will focus on the interval [0, T]. The two signals $h_0(t)$ and $h_1(t)$ are defined as follow :

$$
h_0(t) = \begin{cases} A & \text{if } t \in [0, T/2[\\ 0 & \text{elsewhere} \end{cases} ; \qquad h_1(t) = \begin{cases} A & \text{if } t \in [T/2, T[\\ 0 & \text{elsewhere} \end{cases}
$$
 (1)

where A is a constant.

The signal is received in the presence of noise $b(t)$, white, Gaussian, additive, centered, independent of the signal and with bilateral spectral power density $N_0/2$.

We want to build a receiver formed by a filter with impulse response $q(t)$, followed by a sampler (at time t_0) and a threshold comparator, the filter being chosen to maximize the signal-to-noise ratio at the sampling instant t_0 .

N.B. Several questions of this problem can be dealt independently.

Question 3.8 Draw a diagram of the communication system.

Question 3.9 Express the values u_0 and u_1 of the signal at the sampling instant, in cases where $h_0(t)$ and $h_1(t)$ have respectively been transmitted, assuming no noise. These two quantities will be expressed as integrals in which the fourier transforms $G(f)$, $H_0(f)$, $H_1(f)$ intervene.

Question 3.10 Give the expression of $y(t_0)$, the sampled value at the output of the receiver filter.

Question 3.11 Give the expression of $\mathbb{P}_{Y|U=u_0}(y)$ and $\mathbb{P}_{Y|U=u_1}(y)$ the conditional probability density functions of Y given a value of $U = u_0$ and $U = u_1$ respectively. The variance of the noise at the output of the receiver filter will be denoted σ^2 .

The sample $y(t_0)$, taken at time t_0 at the output of the reception filter, is compared to a threshold S and a decision concerning the value of the binary element β is taken according to the following rule :

$$
\begin{cases} y(t_0) > S & \text{then } \hat{\beta} = 1 \\ y(t_0) < S & \text{then } \hat{\beta} = 0 \end{cases}
$$
 (2)

where $\hat{\beta}$ represents the result of the decision.

^{1.} The probability density of the zero mean gaussian random variable X is $\mathbb{P}_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$

^{2.} Remember the law of total probability : $\mathbb{P}(A) = \sum_{n} \mathbb{P}(A | B = b_n)\mathbb{P}(B = b_n)$

^{3.} High-intensity training

Question 3.12 Explain which events are called "error".

Question 3.13 Given the conditional probability density functions of Y found in Question [3.11,](#page-2-3) sketch the conditional probabilities of the erroneous decision as areas for a threshold S closer to the value u_1 than u_0 :

$$
P_{e0} = \int_{S}^{+\infty} \mathbb{P}_{Y|U=u_0}(y) \mathrm{d}y \tag{3}
$$

$$
P_{e1} = \int_{-\infty}^{S} \mathbb{P}_{Y|U=u_1}(y) \, dy. \tag{4}
$$

Question 3.14 Deduce from the previous sketch, the optimal threshold S_{opt} which minimizes the quantity $P_{e0} + P_{e1}$.

Finally, we can show that the probability of error with a $matched\ filter^4$ $matched\ filter^4$ and the optimal threshold is :

$$
P_{eb} = \frac{1}{2} \operatorname{erfc} \sqrt{\frac{\Delta^2}{4N_0}}
$$
 (5)

with

$$
\Delta^2 = \int_0^T (h_1(t) - h_0(t))^2 dt
$$
\n(6)

Question 3.15 What does Δ^2 represent from an algebraic geometry point of view?

^{4.} Filter whose response maximizes the signal to noise ratio